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Abstract

This paper introduces soft bitopological ordered spaces, combining soft topological spaces with
partial order relations. The authors extensively investigate increasing, decreasing, and balanc-
ing pairwise open and closed soft sets, analyzing their properties. They prove that the collection
of increasing (decreasing) open soft sets forms an increasing (decreasing) soft topology. The
paper thoroughly examines increasing and decreasing pairwise soft closure and interior opera-
tors. Notably, it introduces bi−ordered soft separation axioms, denoted as PSTi (PST •

i , PST ∗
i ,

PST ∗∗
i )−ordered spaces, i = 0, 1, 2, showcasing their interrelationships through examples. It

explores separation axiom distinctions in bitopological ordered spaces, referencing relevant lit-
erature such as thework of El-Shafei et al. [5]. The paper investigates new types of regularity and
normality in soft bitopological ordered spaces and their connections to other properties. Impor-
tantly, it establishes the equivalence of three properties for a soft bitopological ordered space sat-
isfying the conditions of being TP ∗-soft regularly ordered: PST2−ordered, PST1-ordered, and
PST0-ordered. It introduces the concept of a bi−ordered subspace and explores its hereditary
property. The authors define soft bitopological ordered properties using ordered embedding
soft homeomorphism maps and verify their applicability for different types of PSTi−ordered
spaces, i = 0, 1, 2. Finally, the paper identifies the properties of being a TP ∗; (PP ∗)−soft
T3−ordered space and a TP -soft T4-ordered space as a soft bitopological ordered property.
Keywords: soft bitopological ordered space; increasing (decreasing) pairwise soft closure op-

erator; PSTi ( resp. PST •
i , PST ∗

i , PST ∗∗
i )−ordered spaces; (i = 0, 1, 2), TP (PP,

TP ∗, PP ∗)−soft T3−ordered spaces; TP−soft T4−ordered space.
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1 Introduction

In the field of mathematics, the concept of topological ordered spaces, as introduced by Nach-
bin [24], is a fundamental framework that combines partial order theory with the principles of
topological spaces. Building upon this foundation, researchers such as McCartan [22] explored
the application ofmonotone neighborhoods to investigate ordered separation axiomswithin topo-
logical ordered spaces. Abo-Elhamayel et al. [6] introduced a novel class of separation axioms,
leveraging the concept of limit points of a set, thus contributing to the evolving landscape of topo-
logical ordered spaces.

In real-life problem-solving, the inherent vagueness and uncertainty have led to the develop-
ment of mathematical tools like fuzzy sets, intuitionistic fuzzy sets, rough sets, vague sets, and
soft sets. Molodtsov’s pioneering work [23] introduced the notion of soft sets, offering an effec-
tive means to handle these challenges. Subsequently, Maji et al. [21, 20], Aktas and Cagman [1],
Senel and Cagman [27, 29], Shabir and Naz [30], and Hussain and Ahmad [14] expanded upon
the theory of soft sets, exploring their applications in decision-making and algebraic structures.

Al-shami’s work [2] and the research by Tantawy et al. [33] have introduced innovative soft
separation axioms, incorporating partial belong and total non-belong relations, and employing
the concept of soft points, respectively. Exploring the intricacies of soft neighborhood systems,
Zorlutuna et al. [34], Nazmul and Samanta [25], Gocur et al. [13], and Hussain et al. [15] have
introduced and examined diverse features associated with soft topological spaces and their sepa-
ration axioms. Expanding on the understanding of soft topological spaces, Singh and Noorie [32]
have further enriched this domain. In 1963, Kelly [18] introduced the concept of a bitopological
space, presenting it as a more intricate structure compared to a topological space. More recently,
Sharma et al. [31] innovatively introduced a novel form of weak open sets through the process of
idealization within the context of bitopological spaces.

El-Sheikh et al. [12] and Ittanagi [16] introduced innovative extensions to soft topological
spaces, namely, supra soft topological spaces and soft bitopological spaces. These new concepts
are defined over initial universal sets and incorporate fixed sets of parameters, opening up new
avenues for exploration. Kandil et al. [17] and Senel et al. [28] further advanced the study of
soft bitopological spaces by defining fundamental notions such as pairwise open and closed soft
sets, pairwise soft closure, interior, kernel operators, and more. Their work also encompasses the
examination of pairwise soft continuous mappings and open and closed soft mappings between
two soft bitopological spaces.

The work by El-Shafei et al. [5, 11] has played a pivotal role, making significant contributions
through the introduction of monotone soft sets and increasing (decreasing) soft operators. Fur-
thermore, they have established the groundwork for the concept of soft topological ordered spaces
and formulated ordered soft separation axioms. El-Shafei et al. [4, 7] brought forth the notion of
soft orderedmaps and explored the partial belong relation concerning soft separation axioms and
decision-making problems. In 2020 [8], they presented two innovative variations of ordered soft
separation axioms.

The objective of this study is to establish a soft bitopological ordered space, which integrates
a soft bitopological space with a partial order relation. Specifically, in this paper, we treat a gen-
erating soft bitopological ordered space and a soft bitopological space as equivalent if the partial
order relation corresponds to an equality relation. To facilitate our investigations, we commence by
introducing the definitions and results of soft set theory, soft topological spaces, and soft bitopo-
logical spaces, as they form the fundamental groundwork for our research.
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In Section 3, we introduce the concepts of increasing and decreasing pairwise soft sets, shed-
ding light on their fundamental properties. Additionally, we define and explore the notions of
increasing, decreasing, and balancing total and partial pairwise soft neighborhoods, as well as in-
creasing and decreasing pairwise open soft neighborhoods, while illustrating their relationships.
Notably, one of the significant findings in Section 3 is Theorem 3.2, which plays a crucial role in
verifying results concerning soft topological spaces.

In Section 4, we introduce the concepts of increasing and decreasing pairwise soft closure
and interior operators, illustrating their relationships with the help of examples. In Section 5,
we present the concepts of bi−ordered soft separation axioms, specifically PSTi−ordered spaces,
PST •

i −ordered spaces, PST ∗
i −ordered spaces, and PST ∗∗

i −ordered spaces (where i = 0, 1, 2).
We offer illustrative examples to demonstrate the interrelationships between these axioms. Fur-
ther exploration of novel patterns of regularity and normality in soft bitopological ordered spaces,
along with their interconnections to other characteristics, deepens our comprehension of these
spaces. Notably, the paper establishes the equivalence of three properties when (Υ, η1, η2,Π,≲)
satisfies the conditions of being TP ∗−soft regularly ordered: (Υ, η1, η2,Π,≲) is PST2−ordered,
(Υ, η1, η2,Π,≲) is PST1−ordered, and (Υ, η1, η2,Π,≲) is PST0−ordered.

Moreover, we introduce the concept of a bi−ordered subspace and explore its hereditary prop-
ertywithin the context of soft bitopological ordered spaces. Additionally, we define soft bitopolog-
ical orderedproperties andvalidate them forPSTi−ordered spaces (where i = 0, 1, 2),PST •

i −ordered
spaces, PST ∗

i −ordered spaces, and PST ∗∗
i −ordered spaces. We also establish the property of be-

ing a TP ∗(PP ∗)soft T3−ordered space and a TP−soft T4−ordered space as a soft bitopological
ordered property. In Section 6, we present the discussion of our paper, and in Section 7, we provide
the concluding remarks on our research findings.

2 Preliminaries

This section provides a brief overview of key concepts and relevant results from the fields of
soft sets, soft topological spaces, soft bitopological spaces, and soft topological ordered spaces,
which will be used in this paper.

From now on, let Υ represent the universe set, Π represent a fixed set of parameters, and 2Υ

represent the power set of Υ.
Definition 2.1. [9, 21, 23, 30] A soft set is defined as a pair (ω,Π), where ω : Π → 2Υ. The notation
ωΠ is used instead of (ω,Π) for brevity. A soft set can also be represented as a set of ordered pairs, where
ωΠ = {(α, ω(α)) : α ∈ Π, ω(α) ∈ 2Υ}. The collection of all soft sets over Υ is denoted by P (Υ)Π. A null
soft set, denoted by ϕ̂, is one where ω(α) = ∅ for all α ∈ Π. An absolute soft set, denoted by ΥΠ, is one
where ω(α) = Υ for all α ∈ Π. Two soft sets, ωΠ, ℏΠ ∈ P (Υ)Π, are considered a soft subset, denoted by
ℏΠ ⊑ ωΠ, if ℏ(α) ⊆ ω(α) for all α ∈ Π. They are considered equal, denoted by ℏΠ = ωΠ, if ℏΠ ⊑ ωΠ and
ωΠ ⊑ ℏΠ. The union and intersection of two soft sets, ℏΠ and ωΠ, are represented by ℏΠ⊔ωΠ and ℏΠ⊓ωΠ,
respectively. The difference of two soft sets, ℏΠ and ωΠ, is denoted by ℏΠ − ωΠ, and the complement of a
soft set ℏΠ is denoted by ℏcΠ.

Definition 2.2. [25, 26] A soft set ℏΠ : Π → 2Υ defined as ℏ(e) = {ρ} if e = α and ℏ(e) = ∅ if
e ∈ Π − {α} is called a soft point and denoted by ρα. The collection of all soft points over Υ is denoted
by Sp(Υ)Π. A soft point ρα is said to be belonging to a soft set ℏΠ, denoted by ρα∈̂ℏΠ, if for the member
α ∈ Π, ρ(α) ⊆ ℏ(α).

Definition 2.3. [10] A soft set ωΠ over Υ is referred to as a soft singleton if there exists an element ν0 in
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Υ such that ω(α) = ν0 for all α in Π. We denote a soft singleton as ων0Π .

Definition 2.4. [5, 23] For a soft set ℏΠ overΥ and an element ρ ∈ Υ, we say ρ ∈ ℏΠ if ρ ∈ ℏ(α) for every
α ∈ Π and ρ ̸∈ ℏΠ if ρ ̸∈ ℏ(α) for some α ∈ Π. We say ρ ⋐ ℏΠ if ρ ∈ ℏ(α) for some α ∈ E and a ̸⋐ ℏΠ if
a ̸∈ ℏ(α) for every α ∈ Π. The notations ∈, ̸∈,⋐ and ̸⋐ are respectively read as belong, non-belong, partial
belong and total non-belong relations.

Definition 2.5. [30] A soft topology on Υ is a collection of soft sets over Υ under Π that satisfy the
following conditions:

1. The null soft set and the absolute soft set are included in the collection.

2. The union of any collection of soft sets in the collection is also in the collection.

3. The intersection of any two soft sets in the collection is also in the collection.

The triple (Υ, η,Π) is called a soft topological space over Υ, where η is the soft topology. Each member of η
is referred to as a soft open set, and its relative complement is called a soft closed set.

Definition 2.6. [34] A soft subset εΠ of a soft topological space (Υ, η,Π) is called soft neighborhood of
ν ∈ Υ, if there exists a soft open set ωΠ such that ν ∈ ωΠ ⊏ εΠ.

Definition 2.7. [25] Let P (Υ)Π and P (Γ)K be families of soft sets over Υ and Γ, respectively.
Let ϕ : Υ→ Γ and ψ : Π→ K be two mappings. The mapping ϕψ : P (Υ)Π → P (Γ)K is a soft mapping
from Υ to Γ, denoted by ϕψ , defined as follows:

1. For ωΠ ∈ P (Υ)Π, ϕψ(ωΠ)(k) =
⋃
α∈ψ−1(k) ω(α) if ψ−1(k) ̸= ∅, and ϕψ(ωΠ)(k) = ∅ otherwise,

for all k ∈ K. The soft set ϕψ(ωΠ) is called the soft image of ωΠ.

2. For λK ∈ P (ω)K , ϕ−1
ψ (λK)(α) = ϕ−1

(
λ(ψ(α))

)
, for all α ∈ Π. The soft set ϕ−1

ψ (λK) is called the
soft inverse image of λK .

Definition 2.8. [34] Let P (Υ)Π and P (Γ)K be two families of soft sets over Υ and Γ, respectively. A
soft mapping ϕψ : P (Υ)Π → P (Γ)K is called soft surjective( injective) mapping if ϕ, ψ are surjective
(injective) mappings, respectively. A soft mapping which is a soft surjective and soft injective mapping is
called a soft bijection mapping.

Proposition 2.1. [25] Consider ϕψ : P (Υ)Π → P (Γ)K is a soft map and let ωΠ and λK be two soft
subsets of P (Υ)Π and P (Γ)K , respectively. Then we have the following results:

1. ωΠ ⊑ ϕ−1
ψ (ϕψ(ωΠ)) and the equality relation holds if ϕψ is injective.

2. ϕψ(ϕ−1
ψ (λK)) ⊑ λK and the equality relation holds if ϕψ is surjective.

Definition 2.9. [25] A soft map ϕψ : (Υ, η,Π)→ (Γ, η∗,K) is said to be:

1. Soft continuous if the inverse image of each soft open subset of (Γ, η∗,K) is a soft open subset of
(Υ, η,Π).

2. Soft open ( resp. soft closed ) if the image of each soft open ( resp. soft closed ) subset of (Υ, η,Π) is
a soft open ( resp. soft closed ) subset of (Γ, η∗,K).

3. Soft homeomorphism if it is bijective, soft continuous and soft open.
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Definition 2.10. [16, 17] A quadrable system (Υ, η1, η2,Π) is called a soft bitopological space when η1
and η2 are soft topologies on the set Υ with a fixed set of parameters Π. A soft set ℏΠ in a soft bitopological
space (Υ, η1, η2,Π) is called pairwise open soft (PO−soft) if there exists an η1−open soft set ℏ1Π and an
η2−open soft set ℏ2Π such that ℏΠ = ℏ1Π ⊔ ℏ2Π, and pairwise closed soft (PC−soft) if the complement of ℏΠ
is a PO−soft set. The family of all PO−soft sets, denoted by η12, is a supra soft topological space associated
with the soft bitopological space (Υ, η1, η2,Π).

Theorem 2.1. [17] Let (Υ, η1, η2,Π) be a soft bitopological space. Then:

1. Each ηj−open soft set is a PO-soft set, j = 1, 2, i.e., ηj ⊆ η12.

2. Each ηj−closed soft set is a PC-soft set, j = 1, 2, i.e., ηcj ⊆ ηc12.

Definition 2.11. [19] A binary relation ≲ on a set Υ is a partial order relation if it is reflexive, anti-
symmetric, and transitive. The equality relation on Υ, denoted by ▲, is defined as {(ρ, ρ) : ρ ∈ Υ}.

Definition 2.12. [24] A triple (Υ, η,≲) is called a topological ordered space when (Υ, η) is a topological
space and (Υ,≲) is a partially ordered set.

Definition 2.13. [5] A triple (Υ,Π,≲) is called a partially ordered soft space when ≲ is a partial order
relation on the set Υ. An increasing soft operator i : (P (Υ)Π,≲) → (P (Υ)Π,≲) and a decreasing soft
operator d : (P (Υ)Π,≲)→ (P (Υ)Π,≲) are defined for each soft set ℏΠ in P (Υ)Π by i(ℏΠ)(α) = iℏ(α) =
{ρ ∈ Υ : δ ≲ ρ, for some δ ∈ ℏ(α)} and d(ℏΠ)(α) = dℏ(α) = {ρ ∈ Υ : ρ ≲ δ, for some δ ∈ ℏ(α)}
respectively. A soft subset ℏΠ of the partially ordered soft space (Υ,Π,≲) is called increasing if ℏΠ = i(ℏΠ),
decreasing if ℏΠ = d(ℏΠ), and balancing if it is both increasing and decreasing.

Proposition 2.2. [5] The following two results hold for a soft map ϕψ : P (Υ)Π → P (Γ)K .

1. The image of each soft point is soft point.

2. If ϕψ is bijective, then the inverse image of each soft point is soft point.

Definition 2.14. [5] Let να and ζα be two soft points in a partially ordered soft space (Υ,Π,≲). Then,
να ≤ ζα if ν ≤ ζ.

Definition 2.15. [5] A soft map ϕψ : (P (Υ)Π,≲1)→ (P (Γ)K ,≲2) is said to be:

1. Increasing if να ≲1 ζ
α, then ϕψ(να) ≲2 ϕψ(ζ

α).

2. Decreasing if να ≲1 ζ
α, then ϕψ(ζα) ≲2 ϕψ(ν

α).

3. Ordered embedding if να ≲1 ζ
α if and only if ϕψ(να) ≲2 ϕψ(ζ

α).

Theorem 2.2. [5] The following two results hold for a soft map ϕψ :
(
P (Υ)Π,≲1

)
→

(
P (Γ)K ,≲2

)
.

1. If ϕψ is increasing, then the inverse image of each increasing (resp. decreasing ) soft subset of ΓK is
an increasing (resp. a decreasing ) soft subset of ΥΠ.

2. If ϕψ is decreasing, then the inverse image of each increasing (resp. decreasing ) soft subset of ΓK is
an decreasing (resp. a increasing ) soft subset of ΥΠ.

Theorem 2.3. [5] Let ϕψ :
(
P (Υ)Π,≲1

)
→

(
P (Γ)K ,≲2

)
be a bijective ordered embedding soft map.

Then the image of each increasing (resp. decreasing) soft subset ofΥΠ is an increasing (resp. a decreasing)
soft subset of ΓK .
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Proposition 2.3. [5] Let (Υ,Π,≲) be a partially ordered soft space, and let {ℏβΠ : β ∈ Ω} be a collection
of soft sets in (Υ,Π,≲). If all the soft sets ℏβΠ are increasing (resp. decreasing), then ⊔β∈ΩℏβΠ and ⊓β∈ΩℏβΠ
are also increasing (resp. decreasing).

Proposition 2.4. [5] Let i :
(
P (Υ)Π,≲

)
→

(
P (Υ)Π,≲

)
and d :

(
P (Υ)Π,≲

)
→

(
P (Υ)Π,≲

)
be

increasing and decreasing soft operators, and let ℏΠ and ωΠ be two soft sets in (Υ,Π,≲). Then:

1. i(ϕ̂) = ϕ̂ and d(ϕ̂) = ϕ̂.

2. ℏΠ ⊑ i(ℏΠ) and ℏΠ ⊑ d(ℏΠ).

3. i(i(ℏΠ)) = i(ℏΠ) and d(d(ℏΠ)) = d(ℏΠ)

4. i[ℏΠ ⊔ ωΠ] = i(ℏΠ) ⊔ i(ωΠ)and d[ℏΠ ⊔ ωΠ] = d(ℏΠ) ⊔ d(ωΠ).

Definition 2.16. [5] A quadrable system (Υ, η,Π,≲) can be rephrased as a soft topological ordered space
(STOS) if (Υ, η,Π) is a soft topological space and (Υ,Π,≲) is a partially ordered soft space. A soft set ℏΠ
in a soft topological ordered space (Υ, η,Π,≲) is called increasing (decreasing) open soft if it is soft open
and increasing (decreasing).

Definition 2.17. [5] A soft subset εΠ of an STOS (Υ, η,Π,≲) is called an increasing (resp. a decreasing)
soft neighborhood of ν ∈ Υ if εΠ is soft neighborhood of ν and increasing (resp. decreasing).

Definition 2.18. [3] A quadrable system (Υ, η,Π,≲) is referred to as a supra soft topological ordered space,
if (Υ, η,Π) is a supra soft topological space and (Υ,Π,≲) is a partially ordered soft space.

Definition 2.19. [5] Let (Υ, η,Π,≲) be an STOS.We say it satisfies the following properties:

1. It is lower (resp. upper) P-soft T1-ordered if for any distinct points ν, ζ ∈ Υ, there exists an increasing
(resp. decreasing) soft neighborhood εΠ of ν such that ζ ̸⋐ εΠ.

2. It is P-soft T0-ordered if it is either lower P-soft T1-ordered or upper P-soft T1-ordered.

3. It is P-soft T1-ordered if it is both lower P-soft T1-ordered and upper P-soft T1-ordered.

4. It is P-soft T2-ordered if for any distinct points ν, ζ ∈ Υ, there exist disjoint soft neighborhoods εΠ
and VΠ of ν and ζ respectively, such that εΠ is increasing and VΠ is decreasing.

3 Soft Bitopological Ordered Spaces

This section examines the concepts of soft bitopological ordered spaces, pairwise open and
closed soft sets that are increasing, decreasing, or balanced, and pairwise soft neighborhoods that
are increasing, decreasing, total, or partial, as well as the properties of these concepts in a soft
bitopological ordered space.
Proposition 3.1. If ωΠ and ℏΠ are two soft sets in P (Υ)Π and i and d are increasing and decreasing soft
operators respectively, then:

1. i(ΥΠ) = ΥΠ and d(ΥΠ) = ΥΠ

2. If ωΠ ⊑ ℏΠ, then i(ωΠ) ⊑ i(ℏΠ) and d(ωΠ) ⊑ d(ℏΠ)

3. i[ωΠ ⊓ ℏΠ] ⊑ i(ωΠ) ⊓ i(ℏΠ)
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4. d[ωΠ ⊓ ℏΠ] ⊑ d(ωΠ) ⊓ d(ℏΠ)

Proof. The proof for the first and third cases is given, and the proof for the second and fourth cases
can be done similarly.

1. i(ΥΠ)(α) = i(Υ(α)) = i(Υ) = Υ = Υ(α). Therefore, i(ΥΠ) = ΥΠ. Similarly, d(ΥΠ) = ΥΠ.
3. [ωΠ ⊓ ℏΠ] ⊑ ωΠ ⊑ i(ωΠ) and [ωΠ ⊓ ℏΠ] ⊑ ℏΠ ⊑ i(ℏΠ), by Proposition 2.4.

Thus, i[ωΠ ⊓ ℏΠ] ⊑ i(i(ωΠ)) = i(ωΠ) and i[ωΠ ⊓ ℏΠ] ⊑ i(i(ℏΠ)) = i(ℏΠ).
Thus, i[ωΠ ⊓ ℏΠ] ⊑ i(ωΠ) ⊓ i(ℏΠ).

The following example illustrates that the equality stated in items 3 and 4 of Proposition 3.1 is not
always true.
Example 3.1. Let Π = {α1, α2},≲= ▲ ∪ {(δ, f), (σ, ς)} be a partial order relation on Υ = {ρ, δ, σ, ς, f}
and ωΠ, ℏΠ be two soft sets in P (Υ)Π and defined as follows:

ωΠ =
{
(α1, {ρ, δ}), (α2, {ρ, ς})

}
, ℏΠ =

{
(α1, {δ, σ}), (α2, {ρ, δ, σ})

}
.

Then,

i(ωΠ) =
{
(α1, {ρ, δ, f}), (α2, {ρ, ς})

}
and i(ℏΠ) =

{
(α1, {δ, σ, ς, f}), (α2,Υ)

}
.

Therefore,

i(ωΠ ⊓ ℏΠ) =
{
(α1, {δ, f}), (α2, {ρ})

}
⊑ i(ωΠ) ⊓ i(ℏΠ) =

{
(α1, {δ, f}), (α2, {ρ, ς})

}
.

Also,

d(ωΠ) =
{
(α1, {ρ, δ}), (α2, {ρ, σ, ς})

}
and d(ℏΠ) =

{
(α1, {δ, σ}), (α2, {ρ, δ, σ})

}
.

Therefore,

d(ωΠ ⊓ ℏΠ) =
{
(α1, {δ}), (α2, {ρ})

}
⊑ d(ωΠ) ⊓ d(ℏΠ) =

{
(α1, {δ}), (α2, {ρ, σ})

}
.

Definition 3.1. The system composed of a set Υ, two topologies η1 and η2, a set Π, and a partial order
relation ≲ is called a soft bitopological ordered space (SBTOS) if it satisfies two conditions:

1. (Υ, η1, η2,Π) is a soft bitopological space.

2. (Υ,Π,≲) is a partially ordered soft space.

Definition 3.2. In an SBTOS (Υ, η1, η2,Π,≲), a soft set ωΠ overΥ can be classified into different types.
These types include:

1. Increasing pairwise open soft (IPO−soft) if ωΠ = ω1
Π ⊔ ω2

Π, ω
β
Π ∈ ηβ and increasing, β = 1, 2.

2. Decreasing pairwise open soft (DPO−soft) if ωΠ = ω1
Π ⊔ ω2

Π, ω
β
Π ∈ ηβ and decreasing, β = 1, 2.

3. Increasing pairwise closed soft (IPC−soft) if ωΠ = ω1
Π ⊓ ω2

Π, ω
β
Π ∈ ηcβ and increasing, β = 1, 2.
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4. Decreasing pairwise closed soft (DPO−soft) if ωΠ = ω1
Π ⊓ ω2

Π, ω
β
Π ∈ ηcβ and decreasing, β = 1, 2.

5. Balancing pairwise open soft (BPO−soft): a soft set that is both IPO−soft and DPO−soft.

6. Balancing pairwise closed soft (BPC−soft): a soft set that is both IPC−soft and DPC−soft.

The collection of all IPO−soft sets in (Υ, η1, η2,Π,≲) is denoted by IPOS(Υ, η1, η2)Π, and similarly for
DPO−soft sets, IPC−soft sets and DPC−soft sets.

Proposition 3.2. For a PO(PC)−soft set ωΠ in an SBTOS (Υ, η1, η2,Π,≲) and an increasing soft
operator i, the following holds:

1. The original soft set is a soft subset of the result of applying the increasing soft operator, ωΠ ⊑ i(ωΠ).

2. Applying the increasing soft operator twice results in the same soft set as applying it once,
i(i(ωΠ)) = i(ωΠ).

Proof. We will only provide proof for certain cases of the two statements mentioned above, and
that the remaining cases, which are enclosed in parentheses, can be proved in a similar manner.

1.

ωΠ = ω1
Π ⊔ ω2

Π, ωβΠ are ηβ − increasing, β = 1, 2,

⊑ i(ω1
Π) ⊔ i(ω2

Π), ωβΠ ⊑ i(ω
β
Π), β = 1, 2,

= i
[
ω1
Π ⊔ ω2

Π

]
, by Proposition 2.4,

= i(ωΠ).

2.

i(i(ωΠ)) = i
[
i
[
ω1
Π ⊔ ω2

Π

]]
, ωβΠ are ηβ − increasing, β = 1, 2,

= i
[
i(ω1

Π) ⊔ i(ω2
Π)

]
, by Proposition 2.4,

= i
[
i(ω1

Π)
]
⊔ i

[
i(ω2

Π)
]
,

= i(ω1
Π) ⊔ i(ω2

Π),

= i
[
ω1
Π ⊔ ω2

Π

]
,

= i(ωΠ).

A similar proof can be applied to the following proposition.
Proposition 3.3. For a PO(PC)−soft set ωΠ in an SBTOS (Υ, η1, η2,Π,≲) and a decreasing soft op-
erator d, it can be shown that ωΠ ⊑ d(ωΠ) and d(d(ωΠ)) = d(ωΠ).

Theorem 3.1. In an SBTOS (Υ, η1, η2,Π,≲), a soft set ωΠ is IPO(DPO)−soft if and only if ωcΠ is
DPC(IPC)−soft.
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Proof.
Necessity: Let, ωΠ be an IPO−soft set. Then, ωΠ = ω1

Π ⊔ ω2
Π, ω

β
Π ∈ ηβ and increasing, β = 1, 2.

This implies that, ωcΠ =
[
ω1
Π ⊔ ω2

Π

]c
= ω1c

Π ⊓ ω2c
Π , ω

βc
Π ∈ ηcβ and decreasing, β = 1, 2. Now,

d(ωcΠ) = d
[
ω1c
Π ⊓ω2c

Π

]
⊑ d(ω1c

Π )⊓d(ω2c
Π ) = ωcΠ, by Proposition 3.1. But, ωcΠ ⊑ d(ωcΠ), by Proposition

3.3. Therefore, ωcΠ = d(ωcΠ). Hence, ωcΠ is a DPC−soft set.

Sufficiency: If ωΠ is aDPC−soft set, then ωΠ = ω1
Π ⊓ω2

Π, ωβΠ ∈ ηcβ and decreasing, β = 1, 2. Thus,
ωcΠ = [ω1

Π ⊓ ω2
Π]
c = ω1c

Π ⊔ ω2c
Π , ωβcΠ ∈ ηcβ and increasing, β = 1, 2. Therefore, ωcΠ is an IPO−soft set.

The proof demonstrates that if ωΠ is IPO−soft, then ωcΠ is DPC−soft and vice versa. The same
applies for the case between parentheses.
Definition 3.3. In a soft topological ordered space (Υ, η,Π,≲), it is called an increasing (a decreasing)
soft topological space if all soft open sets in it are increasing (decreasing).

Theorem 3.2. In an STOS (Υ, η,Π,≲), the collection of all increasing open soft and decreasing open
soft sets forms the increasing soft topology, denoted by ηI , and decreasing soft topology, denoted by ηD,
respectively on Υ. i. e.,

1. ηI = {ωΠ : ωΠ ∈ η, ωΠ is increasing},

2. ηD = {ωΠ : ωΠ ∈ η, ωΠ is decreasing}.

Proof.

1. • ϕ̂,ΥΠ are increasing open soft sets (clear).Then, ϕ̂,ΥΠ ∈ ηI .
• Let ω1

Π, ω
2
Π ∈ ηI . Then, ω1

Π and ω2
Π are increasing open soft sets. So, ω1

Π⊓ω2
Π is increasing

open soft, by Proposition 2.3 and Definition 2.5. Therefore, ω1
Π ⊓ ω2

Π ∈ ηI .

• Let {ωβΠ, β ∈ Ω} ⊆ ηI . Then, ⊔β∈Ωω
β
Π is increasing open soft set, by Proposition 2.3 and

Definition 2.5. Therefore, ⊔β∈Ωω
β
Π ∈ ηI .

Hence, ηI is an increasing soft topology over Υ.
By analogy with (1), one can prove (2).

Corollary 3.1. For an STOS (Υ, η,Π,≲), we have:

1. ηcI =
{
ωcΠ : ωΠ ∈ ηD

}
.

2. ηcD =
{
ℏcΠ : ℏΠ ∈ ηI

}
.

Lemma 3.1. For an STOS (Υ, η,Π,≲), we have:

1. ηIc = ηcD.

2. ηDc = ηcI .

17
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Proof.

1. ωΠ ∈ ηIc ⇔ ωcΠ ∈ ηI ⇔ ωΠ ∈ ηcD.
By analogy with (1), one can prove (2).

Definition 3.4. A quadrable system (Υ, η,Π,≲) is defined as an increasing (decreasing) supra soft topo-
logical ordered space if it satisfies two conditions: 1) it is a supra soft topological space and 2) every open
soft set in (Υ, η,Π,≲) is an increasing (decreasing) open soft set.

Corollary 3.2. For an STOS (Υ, η1, η2,Π,≲), the family of all IPO−soft and DPO−soft sets forms
an increasing supra soft topology, denoted by ηIP12 , and decreasing supra soft topology, denoted by ηDP12 ,
respectively on Υ. i.e.,

ηIP12 =
{
ωΠ : ωΠ = ω1

Π ⊔ ω2
Π, ωβΠ ∈ ηβ and increasing, β = 1, 2

}
,

ηDP12 =
{
ℏΠ : ℏΠ = ℏ1Π ⊔ ℏ2Π, ℏβΠ ∈ ηβ and decreasing, β = 1, 2

}
.

However,

ηcIP12 =
{
λcΠ : λΠ ∈ ηDP12

}
,

ηcDP12 =
{
OcΠ : OΠ ∈ ηIP12

}
.

Lemma 3.2. Let (Υ, η1, η2,Π,≲) be an STOS. Then:

1. ηIPc12 = ηcDP12 .

2. ηDPc12 = ηcIP12 .

Proof.

1. ωΠ ∈ ηIPc12 ⇔ ωcΠ ∈ ηIP12 ⇔ ωΠ ∈ ηcDP12 .

Using analogy with statement (1), we can establish the equivalence of statement (2).

Theorem 3.3. Let (Υ, η1, η2,Π,≲) be an STOS. Then:

1. ϕ̂ and ΥΠ are IPO(DPO)−soft sets and IPC(DPC)−soft sets.

2. An arbitrary union of IPO(DPO)−soft sets is an IPO(DPO)−soft set.

3. An arbitrary intersection of IPC(DPC)−soft sets is an IPC(DPC)−soft set.

Proof.

18



S. H. Shalil et al. Malaysian J. Math. Sci. 18(1): 9–38(2024) 9 - 38

1. Clear.
2. Let {ωβΠ : β ∈ Ω} ⊆ IPOS(Υ, η1, η2)Π. Then, ωβΠ is an IPO−soft set ∀β ∈ Ω, implies there

exist two increasing soft sets ω1β
Π ∈ η1 and ω2β

Π ∈ η2 such that ωβΠ = ω1β
Π ⊔ω

2β
Π , ∀β ∈ Ωwhich

implies that ⊔β∈Ω(ω
β
Π) = ⊔β∈Ω[ω

1β
Π ⊔ ω

2β
Π ] = [⊔β∈Ωω

1β
Π ] ⊔ [⊔β∈Ωω

2β
Π ]. Now, since η1 and η2

are two soft topologies, then [⊔β∈Ω(ω
1β
Π )] ∈ η1 and [⊔β∈Ω(ω

2β
Π )] ∈ η2, by Proposition 2.3.

Consequently, ⊔β∈Ωω
β
Π is an IPO−soft set.

Similarly, if {ωβΠ : β ∈ Ω} ⊆ DPOS(Υ, η1, η2)Π, then ⊔β∈Ωω
β
Π is a DPO−soft set.

3. Let {ωβΠ : β ∈ Ω} ⊆ IPCS(Υ, η1, η2)Π. Then, ωβΠ is an IPC−soft set ∀β ∈ Ω, implies there
exist two increasing soft sets ω1β

Π ∈ ηc1, ω2β
Π ∈ ηc2 such that ωβΠ = ω1β

Π ⊓ ω
2β
Π , ∀β ∈ Ω which

implies that ⊓β∈Ω(ω
β
Π) = ⊓β∈Ω[ω

1β
Π ⊓ω

2β
Π ] = [⊓β∈Ωω

1β
Π ]⊓ [⊓β∈Ωω

2β
Π ]. Now, since of η1 and η2

are two soft topologies, then [⊓β∈Ω(ω
1β
Π )] ∈ ηc1 and [⊓β∈Ω(ω

2β
Π )] ∈ ηc2. Consequently, ⊓β∈Ωω

β
Π

is an IPC−soft set.
Similarly, if {ωβΠ : β ∈ Ω} ⊆ DPCS(Υ, η1, η2)Π. Then, ⊓β∈Ωω

β
Π is a DPC−soft set.

The following example illustrates that:

1. ηIP12 (ηDP12 ) is not necessarily an increasing (decreasing) soft topology.
2. The intersection of a finite number of IPO(DPO)−soft sets may not be an IPO(DPO)−soft

set.
3. The union of an arbitrary number of IPC(DPC)−soft sets may not be an IPC(DPC)−soft

set.
Example 3.2. Let Π = {α1, α2} and ≲= ▲∪ {(1, ν) : ν ∈ {2, 3}} be a partial order relation on the set of
natural numbers ℵ and η1 = {ωnΠ : n = 1, 2, 3, .......}∪{ϕ̂,ℵΠ}, η2 = {ℏmΠ : m = 1, 2, 3, .......}∪{ϕ̂,ℵΠ}
where, ωnΠ is a soft set over ℵ defined as ωn : Π → 2ℵ such that, ωn(α1) = {n, n + 1, n + 2, ......},
ωn(α2) = ∅,∀n ∈ ℵ and ℏmΠ is a soft set over ℵ defined as, ℏm : Π→ 2ℵ such that,
ℏm(α1) = {1, 2, 3, ...,m}, ℏm(α2) = ∅,∀n ∈ ℵ. Then η1, η2 are soft topologies on ℵ. Consequently
(ℵ, η1, η2,Π,≲) is a soft bitopological ordered space.

On the one hand,ω3
Π ∈ η1, ℏ3Π ∈ η2 are IPO−soft sets. ButF (α1) = ω3(α1)∩ℏ3(α1) = {3, 4, 5, ......}∩

{1, 2, 3} = {3}, F (α2) = ω3(α2)∩ℏ3(α2) = ∅. It is clear thatFΠ can not be expressed as a union of two in-
creasing soft sets one belongs to η1 and the other belongs to η2, i. e., FΠ is not IPO−soft set. Consequently,
η12 is not an increasing soft topology in general.

On the other hand, since ω3
Π and ℏ3Π are IPO−soft sets, then ω3c

Π and ℏ3cΠ are DPC−soft sets, but
ω3c
Π ⊔ ℏ3cΠ is not DPC−soft set, because ω3c

Π ⊔ ℏ3cΠ = GΠ such that G(α1) = ω3c(α1) ∪ ℏ3c(α1) =
(ℵ−{3, 4, 5, ......})∪ (ℵ−{1, 2, 3}) = ℵ−{3}, G(α2) = ω3c(α2)∪ ℏ3c(α2) = ℵ. It is clear thatGΠ can
not be expressed as an intersection of two decreasing soft sets one belongs to ηc1 and the other belongs to ηc2,
i. e., GΠ is not DPC−soft set. Therefore the arbitrary union of DPC−soft sets need not be a DPC−soft
set.

Theorem 3.4. Let (Υ, η1, η2,Π,≲) be an STOS. Then:

1. ηI1 ∪ ηD1 ⊆ η1.
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2. ηI2 ∪ ηD2 ⊆ η2.

3. ηI1 ∪ ηI2 ⊆ ηIP12 .

4. ηD1 ∪ ηD2 ⊆ ηDP12 .

5. ηIP12 ∪ ηDP12 ⊆ η12.

Proof. It is clear that:

1. ηI1 ⊆ η1 and ηD1 ⊆ η1 which implies ηI1 ∪ ηD1 ⊆ η1.
2. ηI2 ⊆ η2 and ηD2 ⊆ η2 which implies ηI2 ∪ ηD2 ⊆ η2.
3. ηI1 ⊆ ηIP12 and ηI2 ⊆ ηIP12 which implies ηI1 ∪ ηI2 ⊆ ηIP12 .
4. ηD1 ⊆ ηDP12 and ηD2 ⊆ ηDP12 which implies ηD1 ∪ ηD2 ⊆ ηDP12 .

5. ηIP12 ⊆ η12 and ηDP12 ⊆ η12 which implies ηIP12 ∪ ηDP12 ⊆ η12.

Definition 3.5. A soft set ωΠ in an STOS (Υ, η1, η2,Π,≲) is called:

1. Increasing pairwise open soft set totally containing ρ ∈ Υ if ωΠ is increasing, PO−soft set and
ρ ∈ ωΠ.

2. Increasing pairwise open soft set partially containing ρ ∈ Υ if ωΠ is increasing, PO−soft set and
ρ ⋐ ωΠ.

3. Decreasing pairwise open soft set totally containing ρ ∈ Υ if ωΠ is decreasing, PO−soft set and
ρ ∈ ωΠ.

4. Decreasing pairwise open soft set partially containing ρ ∈ Υ if ωΠ is decreasing, PO−soft set and
ρ ⋐ ωΠ.

Definition 3.6. A soft set εΠ in an STOS (Υ, η1, η2,Π,≲) is said to be:

1. A total pairwise soft neighborhood of an element ρ ∈ Υ, if there is a PO−soft set ωΠ such that
ρ ∈ ωΠ ⊑ εΠ.

2. A partial pairwise soft neighborhood of an element ρ ∈ Υ if there is a PO−soft set ωΠ such that
ρ ⋐ ωΠ ⊑ εΠ.

Definition 3.7. A soft set εΠ in an STOS (Υ, η1, η2,Π,≲) is said to be:

1. An increasing total pairwise soft neighborhood (ITPS−nbd) of an element ρ ∈ Υ, if εΠ is a total
pairwise soft neighborhood of ρ and is increasing.

2. An increasing partial pairwise soft neighborhood (IPPS−nbd) of an element ρ ∈ Υ, if εΠ is a partial
pairwise soft neighborhood of ρ and is increasing.

3. A decreasing total pairwise soft neighborhood (DTPS−nbd) of an element ρ ∈ Υ, if εΠ is a total
pairwise soft neighborhood of ρ and is decreasing.
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4. A decreasing partial pairwise soft neighborhood (DPPS−nbd) of an element ρ ∈ Υ, if εΠ is a partial
pairwise soft neighborhood of ρ and is decreasing.

5. A balancing total pairwise soft neighborhood (BTPS−nbd) of an element ρ ∈ Υ, if εΠ is a total
pairwise soft neighborhood of ρ and is balancing.

6. A balancing partial pairwise soft neighborhood (BPPS−nbd) of an element ρ ∈ Υ, if εΠ is a partial
pairwise soft neighborhood of ρ and is balancing.

Definition 3.8. Let (Υ, η1, η2,Π,≲) be an STOS and let ωΠ ∈ P (Υ)Π and ρα ∈ Sp(Υ)Π. Then, ωΠ is
called:

1. An increasing pairwise open soft neighborhood (IPS − nbd) of ρα, if there exists a PO−soft set λΠ
such that ρα∈̂λΠ ⊑ ωΠ and ωΠ is increasing.

2. A decreasing pairwise open soft neighborhood (DPS − nbd) of ρα, if there exists a PO−soft set λΠ
such that ρα∈̂λΠ ⊑ ωΠ and ωΠ is decreasing.

The following example illustrates the distinction between pairwise open soft sets and pairwise
soft neighborhoods, specifically in terms of increasing and decreasing.
Example 3.3. In this example, let Π = {α1, α2} be a set and let ≲= ▲ ∪ {(δ, f), (σ, ς)} be a partial order
relation on the setΥ = {ρ, δ, σ, ς, f}. Also, let η1 = {ΥΠ, ϕ̂, ωΠ} where ωΠ = {(α1, {ρ, δ}), (α2, {ρ, ς})}
and η2 = {ΥΠ, ϕ̂, ℏΠ} where ℏΠ = {(α1, {σ}), (α2, {ς})}.

Then, η12 = {ΥΠ, ϕ̂, ωΠ, ℏΠ, λΠ} where λΠ = {(α1, {ρ, δ, σ}), (α2, {ρ, ς})}. Now,
i(ωΠ) = {(α1, {ρ, δ, f}), (α2, {ρ, ς})} ̸= ωΠ and d(ωΠ) = {(α1, {ρ, δ}), (α2, {ρ, σ, ς})} ̸= ωΠ. So
ωΠ is neither increasing nor decreasing. On the other hand, OΠ = {(α1, {ρ, δ, f}), (α2, {ρ, σ, ς})} is a
BTPS−nbd of ρ because:

1. ρ ∈ ωΠ ⊑ OΠ,

2. i(OΠ) = OΠ = d(OΠ).

Furthermore,KΠ = {(α1, {ρ, δ, f}), (α2, {ρ, ς})} is an ITPS−nbd of ρ, but it is not aDTPS−nbd of ρ;
and VΠ = {(α1, {ρ, δ}), (α2, {ρ, σ, ς})} is a DTPS−nbd of ρ, but it is not an ITPS−nbd of ρ.

In this example,KΠ is an IPS−nbd of ρα1 , for ρα1∈̂ωΠ ⊑ KΠ, ωΠ ∈ η12; and VΠ is aDPS−nbd
of ςα2 , for ςα2 ∈̂ℏΠ ⊑ VΠ, ℏΠ ∈ η12.

4 Increasing (Decreasing) Pairwise Soft Closure Operators

In this section, we will discuss the ideas of increasing and decreasing pairwise soft closure and
interior operators in a soft bitopological ordered space. We will also examine the basic character-
istics of these concepts.
Definition 4.1. Given a set ωΠ ∈ P (Υ)Π, the increasing pairwise soft closure of ωΠ, denoted as Icls12(ωΠ),
is the intersection of all increasing pairwise closed soft sets that contain ωΠ. i.e., Icls12(ωΠ) = ⊓{ℏΠ : ℏΠ
is IPC−soft set, ωΠ ⊑ ℏΠ}.
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Similarly, the decreasing pairwise soft closure of ωΠ, denoted as Dcls12(ωΠ), is the intersection of all
decreasing pairwise closed soft sets that contain ωΠ. i.e., Dcls12(ωΠ) = ⊓{KΠ : KΠ is DPC−soft set,
ωΠ ⊑ KΠ}.
Both Icls12(ωΠ) andDcls12(ωΠ) are the smallest increasing and decreasing pairwise closed soft sets contain-
ing ωΠ respectively.

On the other hand, the increasing pairwise soft interior of ωΠ, denoted as Iints12(ωΠ), is the union of all
increasing pairwise open soft sets that are contained in ωΠ. i.e.,

Iints12(ωΠ) = ⊔{OΠ : OΠ is IPO − soft set , OΠ ⊑ ωΠ}.

Similarly, the decreasing pairwise soft interior of ωΠ, denoted asDints12(ωΠ), is the union of all decreas-
ing pairwise open soft sets that are contained in ωΠ. i.e., Dints12(ωΠ) = ⊔{GΠ : GΠ is DPO−soft set,
GΠ ⊑ ωΠ}.

Both Iints12(ωΠ) and Dints12(ωΠ) are the largest increasing and decreasing pairwise open soft sets
contained in ωΠ respectively.

Proposition 4.1. For any soft set ωΠ in an SBTOS (Υ, η1, η2,Π,≲), the following holds:
Case:

1. [Icls12(ωΠ)]
c = Dints12(ω

c
Π).

2. [Dcls12(ωΠ)]
c = Iints12(ω

c
Π).

3. [Dints12(ωΠ)]
c = Icls12(ω

c
Π).

4. [Iints12(ωΠ)]
c = Dcls12(ω

c
Π).

Proof. We give only proofs of cases (1) and (3) and the cases (2) and (4) can be derived in a similar
manner.
Case:

1. (Icls12(ωΠ))
c = (⊓{λΠ : ωΠ ⊑ λΠ, λΠ is IPC−soft set})c = ⊔{λcΠ : λcΠ ⊑ ωcΠ, λcΠ is IPO−soft

set} = Dints12(ω
c
Π). Hence, [Icls12(ωΠ)]

c = Dints12(ω
c
Π).

3. (Dints12(ωΠ))
c = (⊔{λΠ : λΠ ⊑ ωΠ, λΠ is IPO−soft set })c = ⊓{λcΠ : ωcΠ ⊑ λcΠ, λ

c
Π is

IPC−soft set} = Icls12(ω
c
Π). Hence, [Dints12(ωΠ)]

c = Icls12(ω
c
Π).

Example 4.1. In this example, we consider an SBTOS (Υ, η1, η2,Π,≲) where Π = {α1, α2},≲= ▲ ∪
{(1, 2)} is a partial order relation on the set of real numbers ℜ and η1 = {ℜΠ, ϕ̂} ∪ {ω1

Π ⊑ ℜΠ : 1 ∈ ω1
Π}

and η2 = {ℜΠ, ϕ̂} ∪ {ω2
Π ⊑ ℜΠ : 2 ∈ ω2

Π}.

Then, ηI1 = {ℜΠ, ϕ̂} ∪ {ω1
Π ⊑ ℜΠ : 1, 2 ∈ ω1

Π}, ηD1 = {ℜΠ, ϕ̂} ∪ {ω1
Π ⊑ ℜΠ : 1 ∈ ω1

Π},
ηI2 = {ℜΠ, ϕ̂} ∪ {ω2

Π ⊑ ℜΠ : 2 ∈ ω2
Π} and ηD2 = {ℜΠ, ϕ̂} ∪ {ω2

Π ⊑ ℜΠ : 1, 2 ∈ ω2
Π} are increasing and

decreasing soft topologies over ℜ. Clear, ηI1 ∪ ηD1 ⊆ η1, and ηI2 ∪ ηD2 ⊆ η2.

Now, η12 = {ℜΠ, ϕ̂}∪{ω1
Π⊔ω2

Π : 1 ∈ ω1
Π, 2 ∈ ω2

Π} and ηIP12 = {ℜΠ, ϕ̂}∪{ω1
Π⊔ω2

Π : 1, 2 ∈ ω1
Π, 2 ∈ ω2

Π},

ηDP12 = {ℜΠ, ϕ̂} ∪ {ω1
Π ⊔ ω2

Π : 1, 2 ∈ ω1
Π, 1 ∈ ω2

Π}. Clear, ηI1 ∪ ηI2 ⊆ ηIP12 , η
D
1 ∪ ηD2 ⊆ ηDP12 , and

ηIP12 ∪ ηDP12 ⊆ η12.
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On the other hand, ηcDP12 = ηIPc12 = {ℜΠ, ϕ̂} ∪ {ω1
Π ⊔ ω2

Π : 1, 2 ̸∈ ω1
Π, 2 ̸∈ ω2

Π} and
ηcIP12 = ηDPc12 = {ℜΠ, ϕ̂} ∪ {ω1

Π ⊔ ω2
Π : 1, 2 ̸∈ ω1

Π, 1 ̸∈ ω2
Π}.

Theorem 4.1. This theorem states properties of the increasing pairwise soft closure operator Icls12 in an
SBTOS (Υ, η1, η2,Π,≲), specifically in relation to sets ωΠ, λΠ in P (Υ)Π.
Case:

1. Icls12(ϕ̂) = ϕ̂ and Icls12(ΥΠ) = ΥΠ.

2. ωΠ ⊑ Icls12(ωΠ).

3. ωΠ is an IPC−soft set if and only if ωΠ = Icls12(ωΠ).

4. ωΠ ⊑ λΠ ⇒ Icls12(ωΠ) ⊑ Icls12(λΠ).

5. Icls12(ωΠ) ⊔ Icls12(λΠ) ⊑ Icls12[ωΠ ⊔ λΠ].

6. Icls12(Icls12(ωΠ)) = Icls12(ωΠ).

Proof. Case:
The proof of (1), (2) and (3) in the theorem are straightforwardly derived from the definition
of the closure operator as defined in Definition 4.1.

4. This part of the proof is showing that if soft set ωΠ is a soft subset of soft set λΠ, and λΠ is a
soft subset of Icls12(λΠ), then it follows that ωΠ is a soft subset of Icls12(λΠ). Since Icls12(λΠ)
is an IPC−soft set and Icls12(ωΠ) is the smallest IPC−soft set containing ωΠ, it follows that
Icls12(ωΠ)must be a soft subset of Icls12(λΠ).

5. If ωΠ is a soft subset of ωΠ ⊔ λΠ and ωΠ ⊔ λΠ is a soft subset of Icls12[ωΠ ⊔ λΠ], then it follows
that Icls12(ωΠ) is a soft subset of Icls12[ωΠ ⊔ λΠ]. Similarly, Icls12(λΠ) is also a soft subset of
Icls12[ωΠ⊔λΠ]. Therefore, it follows that Icls12(ωΠ)⊔Icls12(λΠ) is a soft subset of Icls12[ωΠ⊔λΠ].

6. Clear.

The following theorem can be proven in a similar way using the same method as the previous
theorem.
Theorem 4.2. For any SBTOS (Υ, η1, η2,Π,≲), and any sets ωΠ and λΠ in P (Υ)Π, the following
statements hold:

1. Dcls12(ϕ̂) = ϕ̂ and Dcls12(ΥΠ) = ΥΠ.

2. ωΠ ⊑ Dcls12(ωΠ).

3. ωΠ is a DPC−soft set if and only if Dcls12(ωΠ) = ωΠ.

4. ωΠ ⊑ λΠ ⇒ Dcls12(ωΠ) ⊑ Dcls12(λΠ).

5. Dcls12(ωΠ) ⊔Dcls12(λΠ) ⊑ Dcls12[ωΠ ⊔ λΠ].

6. Dcls12(Dcls12(ωΠ)) = Dcls12(ωΠ).

Theorem 4.3. For any SBTOS (Υ, η1, η2,Π,≲), and any soft sets ωΠ and λΠ in P (Υ)Π, the following
statements hold:
Case:
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1. Iints12(ϕ̂) = ϕ̂ and Iints12(ΥΠ) = ΥΠ.

2. Iints12(ωΠ) ⊑ ωΠ.

3. ωΠ is an IPO−soft set if and only if Iints12(ωΠ) = ωΠ.

4. ωΠ ⊑ λΠ ⇒ Iints12(ωΠ) ⊑ Iints12(λΠ).

5. Iints12[ωΠ ⊓ λΠ] ⊑ Iints12(ωΠ) ⊓ Iints12(λΠ).

6. Iints12(Iints12(ωΠ)) = Iints12(ωΠ).

Proof. Case:
The proof of the first, second, and third statement in this theorem can be easily derived from
Definition 4.1.

4. If a soft set ωΠ is contained in another soft set λΠ and Iints12(ωΠ) is the largest IPO−soft
set contained within ωΠ, then Iints12(ωΠ) is also contained within Iints12(λΠ) which is the
largest IPO−soft set contained within λΠ.

5. For the intersection of soft setsωΠ andλΠ, Iints12[ωΠ⊓λΠ] is containedwithin both Iints12(ωΠ)
and Iints12(λΠ), which are the largest IPO−soft sets contained within ωΠ and λΠ, respec-
tively.

6. Obvious.

Theorem 4.4. For any SBTOS (Υ, η1, η2,Π,≲), and any soft sets ωΠ and λΠ in P (Υ)Π, the following
statements hold:

1. Dints12(ϕ̂) = ϕ̂ and Dints12(ΥΠ) = ΥΠ.

2. Dints12(ωΠ) ⊑ ωΠ.

3. ωΠ is a DPO−set if and only if Dints12(ωΠ) = ωΠ.

4. ωΠ ⊑ λΠ ⇒ Dints12(ωΠ) ⊑ Dints12(λΠ).

5. Dints12[ωΠ ⊓ λΠ] ⊑ Dints12(ωΠ) ⊓Dints12(λΠ).

6. Dints12(Dints12(ωΠ)) = Dints12(MΠ).

Proof. It is stated that the proof is similar to that of a previous theorem therefore has not been
submitted.
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5 bi−Ordered Soft Separation Axioms

The section focuses on the introduction, examination, and investigation of bi−ordered soft sep-
aration axioms namely PSTi, PST •

i , PST
∗
i , and PST ∗∗

i −ordered spaces, (i = 0, 1, 2). It explores
their properties, provides examples, establishes relationships, and presents results. Additionally,
it explores new types of regularity and normality in soft bitopological ordered spaces, highlight-
ing their relationshipswith other properties, which contributes to a deeper understanding of these
spaces.
Definition 5.1. An SBTOS (Υ, η1, η2,Π,≲) is said to be:

1. Lower pairwise soft T1−ordered (LPST1− ordered ): For any distinct points ν and ζ in Υ such that
ν ≰ ζ there exists an ITPS− nbd εΠ of ν such that ζ ̸∈ εΠ.

2. Lower pairwise soft T •
1−ordered (LPST •

1− ordered ): For any distinct points ν and ζ inΥ such that
ν ≰ ζ there exists an ITPS− nbd εΠ of ν such that y ̸⋐ εΠ.

3. Lower pairwise soft T ∗
1−ordered (LPST ∗

1− ordered ): For any distinct points ν and ζ inΥ such that
ν ≰ ζ there exists an IPPS− nbd εΠ of ν such that ζ ̸⋐ εΠ.

4. Lower pairwise soft T ∗∗
1 −ordered (LPST ∗∗

1 − ordered ): For any distinct points ν and ζ in Υ such
that ν ≰ ζ there exists an IPPS− nbd εΠ of ν such that ζ ̸∈ εΠ.

5. Upper pairwise soft T1−ordered (UPST1− ordered ): For any distinct points ν and ζ inΥ such that
ν ≰ ζ there exists a DTPS− nbd εΠ of ζ such that ν ̸∈ εΠ.

6. Upper pairwise soft T •
1−ordered (UPST •

1− ordered ): For any distinct points ν and ζ inΥ such that
ν ≰ ζ there exists a DTPS− nbd εΠ of ζ such that ν ̸⋐ εΠ.

7. Upper pairwise soft T ∗
1−ordered (UPST ∗

1− ordered ): For any distinct points ν and ζ inΥ such that
ν ≰ ζ there exists a DPPS− nbd εΠ of ζ such that ν ̸⋐ εΠ.

8. Upper pairwise soft T ∗∗
1 −ordered (UPST ∗∗

1 − ordered ): For any distinct points ν and ζ in Υ such
that ν ≰ ζ there exists a DPPS− nbd εΠ of ζ such that ν ̸∈ εΠ.

9. PST0−ordered space: AnSBTOS isPST0−ordered if it satisfies eitherLPST1− ordered orUPST1−
ordered.

10. PST •
0−ordered space: An SBTOS is PST •

0−ordered if it satisfies either LPST •
1− ordered or

UPST •
1− ordered.

11. PST ∗
0−ordered space: An SBTOS is PST ∗

0−ordered if it satisfies either LPST ∗
1− ordered or

UPST ∗
1− ordered.

12. PST ∗∗
0 −ordered space: An SBTOS is PST ∗∗

0 −ordered if it satisfies either LPST ∗∗
1 − ordered or

UPST ∗∗
1 − ordered.

13. PST1−ordered space if it is LPST1− ordered and UPST1− ordered.

14. PST •
1−ordered space if it is LPST •

1− ordered and UPST •
1− ordered.

15. PST ∗
1−ordered space: if it is LPST ∗

1− ordered and UPST ∗
1− ordered.

16. PST ∗∗
1 −ordered space if it is LPST ∗∗

1 − ordered and UPST ∗∗
1 − ordered.

17. PST2−ordered space if for every distinct points ν, ζ in Υ such that ν ≰ ζ there exist disjoint
ITPS−nbd εΠ of ν and DTPS−nbd VΠ of ζ.
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18. PST •
2−ordered space if for every distinct points ν, ζ in Υ such that ν ≰ ζ there exist disjoint

ITPS−nbd εΠ of ν and DPPS−nbd VΠ of ζ.

19. PST ∗
2−ordered space if for every distinct points ν, ζ in Υ such that ν ≰ ζ there exist disjoint

IPPS−nbd εΠ of ν and DPPS−nbd VΠ of ζ.

20. PST ∗∗
2 −ordered space if for every distinct points ν, ζ in Υ such that ν ≰ ζ there exist disjoint

IPPS−nbd εΠ of ν and DTPS−nbd VΠ of ζ.

Proposition 5.1. Every PST1( resp. PST •
1 , PST

∗
1 , PST

∗∗
1 )−ordered space (Υ, η1, η2,Π,≲) is also a

PST0( resp. PST •
0 , PST

∗
0 , PST

∗∗
0 )−ordered space.

Proof. The proof is straightforward and follows directly from the Definition 5.1

The following example is showing that the converse of the proposition is false by providing a
specific counterexample.
Example 5.1. Let Π = {e1, e2},≲= ▲ ∪ {(ν, ζ), (ν, z)} be a partial order relation on Υ = {ν, ζ, z} and
η1 = {ϕ̂,ΥΠ, ω

1
Π, ω

2
Π, ω

3
Π}, η2 = {ϕ̂,ΥΠ, FΠ} where,

ω1
Π =

{
(e1, {ζ}), (e2, {ζ})

}
,

ω2
Π =

{
(e1, {z}), (e2, {z})

}
,

ω3
Π =

{
(e1, {ζ, z}), (e2, {ζ, z})

}
,

FΠ =
{
(e1, {ν, ζ}), (e2, {ν, ζ})

}
.

Then (Υ, η1, η2,Π,≲) is LPST1( resp. LPST •
1 , LPST

∗
1 , LPST

∗∗
1 )− ordered. So it is PST0( resp.

PST •
0 , PST

∗
0 , PST

∗∗
0 )−ordered. On the other hand, every decreasing pairwise soft neighborhood of ν

containing ζ .

Proposition 5.2. Every PST2( resp. PST ∗∗
2 )−ordered space (Υ, η1, η2,Π,≲) is also a PST •

1 ( resp.
PST ∗∗

1 )−ordered space.

Proof. The proof directly follows from the Definition 5.1.

The example that is being given is to show that the converse of this proposition is false.
Example 5.2. By taking η1 = η2 = η. The example is referring to an Example 4.7 in a previous work,
[5]. It is stated that this example is PST1−ordered (or PST ∗∗

1 −ordered) but not PST2−ordered (or
PST ∗∗

2 −ordered). This means that there exist PST1−ordered (or PST ∗∗
1 −ordered) spaces that are not

PST2−ordered (or PST ∗∗
2 − ordered), which contradicts the converse of the proposition.

Proposition 5.3. Every PST •
0 ( resp. PST •

1 , PST
∗
0 , PST

∗
1 )−ordered space (Υ, η1, η2,Π,≲) is also a

PST0( resp. PST1, PST ∗∗
0 , PST ∗∗

1 )−ordered space.

Proof. The proof relies on the observation that if a total non-belong relation ̸⋐ exists, then it implies
a non-belong relation ̸∈.

The provided example serves to illustrate that the converse of this proposition is not true.
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Example 5.3. LetΠ,≲ andΥ as in Example 5.1 and η1 =
{
ϕ̂,ΥΠ, ω

1
Π, ω

2
Π, ω

3
Π, ω

4
Π

}
, η2 =

{
ϕ̂,ΥΠ, F

1
Π, F

2
Π

}
where,

ω1
Π =

{
(e1, {ζ}), (e2, {ν, ζ})

}
,

ω2
Π =

{
(e1, {z}), (e2, {ν, z})

}
,

ω3
Π =

{
(e1, {ζ, z}), (e2,Υ)

}
,

ω4
Π =

{
(e1, ∅), (e2, {ν})

}
,

F 1
Π =

{
(e1, {ν}), (e2, {ν, ζ})

}
,

F 2
Π =

{
(e1, ∅), (e2, {ν, ζ})

}
.

Now, η12 = η1 ∪ η2 ∪
{
λ1Π, λ

2
Π, λ

3
Π

}
where,

λ1Π =
{
(e1, {ν, ζ}), (e2, {ν, ζ})

}
,

λ2Π =
{
(e1, {ν, z}), (e2,Υ)

}
,

λ3Π =
{
(e1, {z}), (e2,Υ)

}
.

In simple terms, this example is trying to prove that not allPST •
0 ( resp. PST •

1 , PST
∗
0 , PST

∗
1 )−ordered

spaces are PST0( resp. PST1, PST ∗∗
0 , PST ∗∗

1 )−ordered spaces, by showing a specific example of a space
that isPST •

0 ( resp. PST •
1 , PST

∗
0 , PST

∗
1 )−ordered but notPST0( resp. PST1, PST ∗∗

0 , PST ∗∗
1 )−ordered.

Proposition 5.4. Every PST2−ordered space (Υ, η1, η2,Π,≲) is PST ∗
2−ordered.

Proof. The proof for the proposition states that the belong relation ∈ implies a total belong relation
⋐ .

Example 5.4. Let Π = {eα, eβ} be a set of parameters, ≲= ▲ ∪ {(1, 2)} be a partial order relation on
the set of natural numbers ℵ. Define η1 = {ωΠ ⊑ ℵΠ such that 1 ̸∈ ωΠ} and η2 = {FΠ ⊑ ℵΠ such that
2 ∈ ωΠ}. The example states that this specific space is PST ∗

2−ordered but not PST2−ordered.

Proposition 5.5. Every PST2( resp. PST ∗∗
2 )−ordered space (Υ, η1, η2,Π,≲) is PST •

2 ( resp. PST ∗
2 )−

ordered.

Proof. The proof for the proposition states that the belong relation ∈ implies a total belong relation
⋐ .

Example 5.5. The example provided states that it follows from an earlier example (Example 5.3) that a
specific space is PST •

2 ( resp. PST ∗
2 )−ordered but not PST2( resp. PST ∗∗

2 )−ordered.

Proposition 5.6. EveryPST •
0 ( resp. PST •

1 , PST
•
2 , PST2, PST

∗
2 , PST

∗∗
2 )−ordered space (Υ, η1, η2,Π,≲)

is also a PST ∗∗
0 ( resp. PST ∗∗

1 , PST ∗∗
1 , PST ∗

1 , PST
∗
0 , PST

∗∗
0 )−ordered space.

Proof. It is based on the principle that belong relation ∈ implies a total belong relation ⋐ and a
total non belong relation ̸⋐ implies a non belong relation ̸∈ .
Example 5.6. It follows from Example 5.3, illustrates that a specific space is PST ∗∗

0 ( resp. PST ∗∗
1 , PST ∗

1 ,
PST ∗

0 , PST
∗∗
0 )− ordered but not PST •

0 ( resp. PST •
1 , PST

•
2 , PST2, PST

∗
2 , PST

∗∗
2 )−ordered.
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The diagram illustrates the relationship between different types of separation axioms, as well
as the implications between them as described in this paper.

PST •
1 −→ PST1 −→ PST0 −→ PST •

0

̸←− ̸←− ̸←−

̸↑↓ ↑̸↓ ̸↑̸↓ ̸↑↓

PST ∗∗
1 ̸−→ PST ∗

1 −→ PST ∗
0 −→ PST ∗∗

0

←− ̸←− ̸←−

↑̸↓ ↑̸↓ ↑̸↓ ↑̸↓

PST •
2 ̸−→ PST2 −→ PST ∗

2 ̸−→ PST ∗∗
2

←− ̸←− ←−

Theorem 5.1. Let (Υ, η1, η2,Π,≲) be an SBTOS. Then the following three statements are equivalent:

1. The space is UPST •
1 ( resp. LPST •

1 )−ordered,

2. For any two elements ν and ζ in Υ such that ν ≰ ζ, there is a PO−soft set ωΠ containing ζ ( resp.
ν) in which ν ≰ z( resp. z ≰ ζ) for every z ∈ ωΠ,

3. For any ν in Υ, the set (i(ν))Π ( resp. d(ν)Π) is PC−soft.

Proof.

(1→ 2) If (Υ, η1, η2,Π,≲) is anUPST •
1−ordered space, and ν and ζ are elements ofΥ such that

ν ≰ ζ. Then there exists aDTPS−nbd εΠ of ζ such that ν ̸⋐ εΠ. Putting ωΠ = sint(εΠ).
Suppose that ωΠ ̸⊑ (i(ν))cΠ. Then there exists z ⋐ ωΠ and z ̸⋐ (i(ν))cΠ. It follows that
z ∈ (i(ν))Π,which implies that ν ≲ z.Now, z ⋐ ωΠ ⊑ εΠ implies that ν ⋐ εΠ.However,
this contradicts the fact that ν ̸⋐ εΠ. Thus ωΠ ⊑ (i(ν))cΠ.Hence ν ≰ z, for every z ⋐ ωΠ.

(2→ 3) Consider ν ∈ Υ and let ρ ⋐ (i(ν))cΠ. Then ν ≰ ρ. Therefore there exists a PO−soft set
ωΠ containing a such that ωΠ ⊑ (i(ν))cΠ. Given that ν and ρ are picked without any
specific criteria, then a pairwise soft set (i(ν))cΠ is PO− soft, for ν ∈ Υ. Hence (i(ν))Π
is PC−soft, for any ν ∈ Υ.

(3→ 1) Let ν ≰ ζ ∈ Υ.Obviously, (i(ν))Π is increasing and by hypothesis, (i(ν))Π is PC− soft.
Then (i(ν))cΠ is a DPO−soft soft set satisfies that ζ ∈ (i(ν))cΠ and ν ̸⋐ (i(ν))cΠ. Thus,
the proof is finished.

An analogous proof can be applied for the case inside the parentheses.
Corollary 5.1. If ν is the smallest ( resp. the largest) element of a LPST •

1 ( resp. UPST •
1 )−ordered space

(Υ, η1, η2,Π,≲), then νΠ is DPC ( resp. IPC)−soft.

Proposition 5.7. If ν is the smallest ( resp. the largest ) element of a finite PST •
1 ordered space

(Υ, η1, η2,Π,≲), then νΠ is DPC ( resp. IPC)−soft.
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Proof. The proposition is verified when ν is the smallest element, and the other case can be proved
analogously. Since ν is the smallest element ofΥ. Then ν ≲ ζ,∀ζ ∈ Υ. By the anti-symmetric of≲,
we have ζ ̸≲ ν, ∀ζ ∈ Υ. By hypothesis, there is a DTPS−nbd FΠ of ν such that ζ ̸⋐ FΠ. It follows
that νΠ = ⊓FΠ. Since Υ is finite, then νΠ is DPO−soft.

A parallel argument can be made for the situation inside the parentheses.
Proposition 5.8. If ν is the smallest ( resp. the largest ) element of a finite a PST ∗

1−ordered space
(Υ, η1, η2,Π,≲), then F νΠ is DPO ( resp. IPO)−soft.

Proof. The proof is analogous to Proposition 5.7, with the substitution of νΠ by F νΠ.

The aforementioned Proposition can be established in the scenario where (Υ, η1, η2,Π,≲) is a
finite PST ∗∗

1 -ordered space.
Proposition 5.9. A finite SBTOS (Υ, η1, η2,Π,≲) is PST •

1−ordered if and only if it is PST2−ordered.

Proof.
Necessity: For each ζ ∈ (i(ν))cΠ,we have (d(ζ))Π is PC− soft. SinceΥ is finite, then ⊔ζ∈(i(ν))cΠ

d(ζ)
is PC− soft. Therefore (⊔ζ∈(i(ν))cΠ

d(ζ))c = (i(ν))Π is a PO− soft set. Thus (Υ, η1, η2,Π,≲) is a
PST2−ordered space.

Sufficiency: It directly follows from Proposition 5.2.
Proposition 5.10. Let (Υ, η1, η2,Π,≲) be an SBTOS with η1 = η2 = η. If (Υ, η1, η2,Π,≲) is
PST •

i −ordered, then (Υ, η,Π,≲) is always P−soft Ti−ordered, for i = 0, 1.

Proof. We have shown the proposition when i = 1, and the other instance can be shown similarly.
Let ν, ζ be two distinct points in (Υ, η,Π,≲) such that ν ≲ ζ. As (Υ, η1, η2,Π,≲) is PST •

1 , then
there exist an ITPS−nbd εΠ of ν such that ζ ̸⋐ εΠ and a ITPS−nbd FΠ of ζ such that ν ̸⋐ FΠ.
Since η1 = η2 = η, then εΠ is an increasing soft neighborhood of ν such that ζ ̸⋐ εΠ and FΠ is
a decreasing soft neighborhood of ζ such that ν ̸⋐ FΠ in (Υ, η,Π,≲). Thus (Υ, η,Π,≲) is P−soft
T1−ordered.
Proposition 5.11. Let (Υ, η1, η2,Π,≲) be an SBTOS with η1 = η2 = η. If (Υ, η1, η2,Π,≲) is
PST2−ordered, then (Υ, η,Π,≲) is always P−soft T2−ordered.

Proof. The proof is analogous to Proposition 5.10.
Definition 5.2. Let Γ ⊆ Υ and (Υ, η1, η2,Π,≲) be an SBTOS. Then (Γ, η1Γ, η2Γ,Π,≲Γ) is called
soft bi−ordered subspace of (Υ, η1, η2,Π,≲) provided that (Γ, η1Γ, η2Γ,Π) is soft bitopological subspace of
(Υ, η1, η2,Π) and ≲Γ=≲ ∩Γ× Γ.

Lemma 5.1. IfUΠ is an increasing (resp. a decreasing) pairwise soft subset of anSBTOS(Υ, η1, η2,Π,≲),
then UΠ ⊓ ΓΠ is an increasing (resp. a decreasing) pairwise soft subset of a soft bi−ordered subspace
(Γ, η1Γ, η2Γ,Π,≲Γ).

Proof. Let UΠ be an increasing pairwise soft subset of an SBTOS (Υ, η1, η2,Π,≲).
In a soft bi−ordered subspace (Γ, η1Γ, η2Γ,Π,≲Γ), let ρ ∈ i≲Γ

(UΠ ⊓ ΓΠ).
Since i≲Γ

(UΠ ⊓ ΓΠ) ⊑ i≲Γ
(UΠ) ⊓ i≲Γ

(ΓΠ) ⊑ UΠ ⊓ ΓΠ, then ρ ∈ (UΠ ⊓ ΓΠ).
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Therefore i≲Γ
(UΠ ⊓ ΓΠ) = UΠ ⊓ ΓΠ. Thus UΠ ⊓ ΓΠ is an increasing pairwise soft subset of a soft

bi−ordered subspace (Γ, η1Γ, η2Γ,Π,≲Γ).

The demonstration is parallel in the case where UΠ is decreasing.
Theorem 5.2. The property of being a PSTi ( resp. PST •

i , PST
∗
i , PST

∗∗
i )−ordered space is hereditary,

for i = 0, 1, 2.

Proof. We establish the theorem for the case PST2, and the other cases can be demonstrated in
a similar way. Let (Γ, η1Γ, η2Γ,Π,≲Γ) be a soft bi−ordered subspace of a PST2−ordered space
(Υ, η1, η2,Π,≲). If ρ, δ ∈ Γ such that ρ ≲Γ δ, then ρ ≲ δ. So by hypothesis, there exist disjoint
total pairwise soft neighborhoods εΠ and VΠ of ρ and δ, respectively, such that εΠ is increasing
and VΠ is decreasing. Setting UΠ = ΓΠ ⊓ εΠ and ωΠ = ΓΠ ⊓ VΠ, by Lemma 5.1, we infer that UΠ

is an ITPS−nbd of ρ and ωΠ is a DTPS−nbd of δ. Since the soft neighborhoods UΠ and ωΠ are
disjoint, it follows that (Γ, η1Γ, η2Γ,Π,≲Γ) is PST2−ordered.
Definition 5.3. For two soft subsetsωΠ andλΠ of anSBTOS (Υ, η1, η2,Π,≲),we say thatωΠ is pairwise
soft neighborhood of λΠ provided that there exists a PO−soft set FΠ such that λΠ ⊑ FΠ ⊑ ωΠ.

Definition 5.4. An SBTOS (Υ, η1, η2,Π,≲) is said to be:

1. Lower ( resp. upper ) PT−soft regularly ordered if for every decreasing ( resp. increasing ) pairwise
closed soft set λΠ and ν ∈ Υ such that ν ̸∈ λΠ there exist disjoint pairwise soft neighborhood εΠ
of λΠ and increasing ( resp. decreasing ) total pairwise soft neighborhood VΠ of ν such that εΠ is
decreasing ( resp. increasing ).

2. Lower ( resp. upper ) PP−soft regularly ordered if for every decreasing ( resp. increasing ) pairwise
closed soft set λΠ and ν ∈ Υ such that ν ̸∈ λΠ there exist disjoint pairwise soft neighborhood εΠ
of λΠ and increasing ( resp. decreasing ) partial pairwise soft neighborhood VΠ of ν such that εΠ is
decreasing ( resp. increasing ).

3. Lower ( resp. upper ) P ∗T−soft regularly ordered if for every decreasing ( resp. increasing ) pairwise
closed soft set λΠ and ν ∈ Υ such that ν ̸⋐ λΠ there exist disjoint pairwise soft neighborhood εΠ
of λΠ and increasing ( resp. decreasing ) total pairwise soft neighborhood VΠ of ν such that εΠ is
decreasing ( resp. increasing ).

4. Lower ( resp. upper ) P ∗P−soft regularly ordered if for every decreasing ( resp. increasing ) pairwise
closed soft set λΠ and ν ∈ Υ such that ν ̸⋐ λΠ there exist disjoint pairwise soft neighborhood εΠ
of λΠ and increasing ( resp. decreasing ) partial pairwise soft neighborhood VΠ of ν such that εΠ is
decreasing ( resp. increasing ).

5. TP−soft regularly ordered if it is both Lower PT−soft regularly ordered and upper PT−soft regu-
larly ordered.

6. PP−soft regularly ordered if it is both Lower PP−soft regularly ordered and upper PP−soft regu-
larly ordered.

7. TP ∗−soft regularly ordered if it is both Lower P ∗T−soft regularly ordered and upper P ∗T−soft
regularly ordered.

8. PP ∗−soft regularly ordered if it is both Lower P ∗P−soft regularly ordered and upper P ∗P−soft
regularly ordered.

9. Lower ( resp. upper ) TP−soft T3 ordered if it is both LPST1−ordered ( resp. UPST1−ordered )
and lower ( resp. upper ) PT−soft regularly ordered.
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10. Lower ( resp. upper ) PP−soft T3 ordered if it is both LPST ∗∗
1 −ordered ( resp. UPST ∗∗

1 -ordered )
and lower ( resp. upper )) PP−soft regularly ordered.

11. Lower ( resp. upper ) TP ∗−soft T3 ordered if it is both LPST •
1−ordered ( resp. UPST •

1−ordered )
and lower ( resp. upper ) P ∗T−soft regularly ordered.

12. Lower ( resp. upper ) PP ∗−soft T3 ordered if it is both LPST ∗
1−ordered ( resp. UPST ∗

1−ordered )
and lower ( resp. upper ) P ∗P−soft regularly ordered.

13. TP−soft T3 ordered if it is both lower TP−soft T3 ordered and upper TP− soft T3 ordered.

14. PP−soft T3 ordered if it is both lower PP−soft T3 ordered and upper PP−soft T3 ordered.

15. TP ∗− soft T3 ordered if it is both lower TP ∗−soft T3 ordered and upper TP ∗−soft T3 ordered.

16. PP ∗−soft T3 ordered if it is both lower PP ∗−soft T3 ordered and upper PP ∗−soft T3 ordered.

Theorem 5.3. An SBTOS (Υ, η1, η2,Π,≲) is lower ( resp. upper ) PT (P ∗T )−soft regularly ordered if
and only if for all ν ∈ Υ and every increasing ( resp. decreasing ) pairwise open soft set UΠ containing ν,
there is an increasing ( resp. decreasing ) total pairwise soft neighborhood VΠ of ν satisfies that
cls12(VΠ) ⊑ UΠ.

Proof.
Necessity: Let ν ∈ Υ and UΠ be an IPO−soft set partially containing ν. Then, U cΠ is DPO−soft
such that ν ̸∈ U cΠ. By hypothesis, there exist disjoint pairwise soft neighborhood εΠ of U cΠ and
ITPS−nbd VΠ of ν. So there is a PO−soft set ωΠ such that U cΠ ⊑ ωΠ ⊑ εΠ. Since VΠ ⊑ εcΠ, then
VΠ ⊑ εcΠ ⊑ ωcΠ ⊑ UΠ and since ωcΠ is PC−soft, then cls12(VΠ) ⊑ ωcΠ ⊑ UΠ.

Sufficiency: Let ν ∈ Υ and λΠ be a DPC−soft set such that ν ̸∈ λΠ. Then λcΠ be an IPO−soft
set containing ν. So that, by hypothesis, there is an ITPS−nbd VΠ of ν such that cls12(VΠ) ⊑ λcΠ.
Consequently, (cls12(VΠ))c is a PO−soft set containing λΠ. Thus d((cls12(VΠ))c) is a pairwise soft
neighborhood and decreasing of λΠ. Suppose that VΠ⊓d((cls12(VΠ))c) ̸= ϕ̂. Then there exists z ∈ Υ
such that z ∈ VΠ and z ∈ d((cls12(VΠ))c). So there exists ζ ∈ ((cls12(VΠ))

c(α) satisfies that z ≲ ζ.
This means that ζ ∈ V (α). But this contradicts the disjointedness between VΠ and (cls12(VΠ))

c.

Thus VΠ ⊓ d((cls12(VΠ))c) = ϕ̂. This completes the proof.

A similar proof can be given for the case between parentheses.
Theorem 5.4. An SBTOS (Υ, η1, η2,Π,≲) is lower ( resp. upper ) PP (P ∗P )−soft regularly ordered
if and only if for all ν ∈ Υ and every increasing ( resp. decreasing ) pairwise open soft set UΠ containing
ν, there is an increasing ( resp. decreasing ) partial pairwise soft neighborhood VΠ of ν satisfies that
cls12(VΠ) ⊑ UΠ.

Proof. The proof is similar to the proof of Theorem 5.3.
Proposition 5.12. Every TP− soft T3−ordered space (Υ, η1, η2,Π,≲) is PP−soft T3−ordered.

Proof. The proposition’s proof establishes that the belong relation, denoted by ∈, can be extended
to a partial belong relation denoted by ⋐.
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Example 5.7. Let Π = {eα, eβ , eγ} be a set of parameters, ≲= ▲ ∪ {(1, 2)} be a partial order relation on
the set of natural numbers ℵ. Define, η1 = {ωΠ ⊑ ℵΠ such that 1 ̸⋐ ωΠ or [1 ∈ ω(eβ) and ωcΠ is finite ]}
and η2 = {FΠ ⊑ ℵΠ such that 3 ∈ F (eα), and F cΠ is finite}. Obviously, (ℵ, η1, η2,Π,≲) is PP− soft
T3−ordered . A soft subset λΠ of (ℵ, η1, η2,Π,≲) is a decreasing pairwise closed soft set if [1 ∈ λΠ and
λΠ is infinite ] or [1 ̸∈ λ(eβ), 3 ̸∈ λ(eα) and λΠ is finite ]. To illustrate that (ℵ, η1, η2,Π,≲) is not lower
PT−soft regularly ordered, we define a decreasing soft closed set λΠ as follows:
λΠ = {(eα, {1, 2}), (eβ , {3}), (eγ , {1, 2})}.

Since 1 ̸∈ λΠ and there do not exist disjoint soft neighborhoods εΠ and VΠ containing λΠ and 1,
respectively, then (ℵ, η1, η2,Π,≲) is not lower PT−soft regularly ordered. Hence (ℵ, η1, η2,Π,≲) is not
TP−soft T3−ordered.

Proposition 5.13. An SBTOS (Υ, η1, η2,Π,≲) is TP−soft T3−ordered if and only if
TP ∗−soft T3−ordered.

Proof. On the one hand, ν ̸⋐ ωΠ implies that ν ̸∈ ωΠ, then TP−soft T3−ordered implies TP ∗−soft
T3−ordered. On the other hand, the definition of TP ∗−soft T3−ordered implies that for every
decreasing ( resp. increasing ) pairwise closed soft set λΠ and ν ∈ Υ such that ν ̸∈ λΠ, there exist
disjoint pairwise soft neighborhood εΠ of λΠ and increasing ( resp. decreasing ) total pairwise soft
neighborhood VΠ of ν, such that εΠ is decreasing ( resp. increasing ). Since εΠ and VΠ are disjoint,
then ν ̸⋐ λΠ and ∀ν ̸≲ ζ, there exist an ITPS ℏΠ of ν such that ζ ̸⋐ ℏΠ. Hence the definitions of
TP−soft T3−ordered and TP ∗−soft T3−ordered are equivalent.
Corollary 5.2. AnSBTOS (Υ, η1, η2,Π,≲) isPP−softT3−ordered if and only ifPP ∗−softT3−ordered.

Proposition 5.14. Every TP ∗− soft T3−ordered space (Υ, η1, η2,Π,≲) is PP ∗−soft T3−ordered.

Proof. The proof for the proposition states that the belong relation ∈ implies a partial belong rela-
tion ⋐ .

Example 5.8. From Example 5.7, an SBTOS (Υ, η1, η2,Π,≲) is PP ∗−soft T3−ordered but it is not
TP ∗−soft T3−ordered.

Proposition 5.15. The following three properties are equivalent if (Υ, η1, η2,Π,≲) is TP ∗−soft regularly
ordered:

1. (Υ, η1, η2,Π,≲) is PST2−ordered;

2. (Υ, η1, η2,Π,≲) is PST1−ordered;

3. (Υ, η1, η2,Π,≲) is PST0−ordered.

Proof. The direction 1)→ 2)→ 3) is obvious from Propositions 5.1, 5.2, 5.3.

To prove 3) → 1), let ν, ζ ∈ Υ such that ν ̸≲ ζ. Since (Υ, η1, η2,Π,≲) is PST0−ordered, then
it is lower pairwise soft T1−ordered or upper pairwise soft T1−ordered. Say it is upper pairwise
soft T1−ordered. From Theorem 5.1, we have that (i(ν))Π is PC−soft. Obviously, (i(ν))Π is in-
creasing and ζ ̸⋐ (i(ν))Π. Since (Υ, η1, η2,Π,≲) is TP ∗−soft regularly ordered, then there exist
disjoint DTPS−nbd εΠ of ζ and pairwise soft neighborhood and increasing VΠ of (i(ν))Π so VΠ
is ITPS−nbd of ν. Thus (Υ, η1, η2,Π,≲) is PST2−ordered.
Corollary 5.3. The following three properties are equivalent if (Υ, η1, η2,Π,≲) is lower (upper)P ∗T−soft
regularly ordered:
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1. (Υ, η1, η2,Π,≲) is PST2−ordered;

2. (Υ, η1, η2,Π,≲) is PST1−ordered;

3. (Υ, η1, η2,Π,≲) is LPST1( resp. UPST1)−ordered.

Proposition 5.16. Every TP ∗−soft T3−ordered space (Υ, η1, η2,Π,≲) is also PST2−ordered.

Proof. Proposition 5.15 implies that any TP ∗-soft T3-ordered space is also PST2−ordered.

Here is an illustration that shows that the converse of Proposition 5.16 is not necessarily true.
Example 5.9. Let Π = {eα, eβ} be a set of parameters, ≲= ▲ ∪ {(1, 2)} be a partial order relation
on the set of natural numbers ℵ. Define η1 = {ωΠ ⊑ ℵΠ such that 1 ∈ ωΠ and ωcΠ is infinite } and
η2 = {FΠ ⊑ ℵΠ such that 1 ∈ F cΠ} ∪ ℵΠ. Then (ℵ, η1, η2,Π,≲) is a soft bitopological ordered space.
Obviously, (ℵ, η1, η2,Π,≲) is PST2−ordered. We have the following 6 cases:
For ν, ζ ∈ ℵ − {1, 2}, ν ̸= ζ :

1. Either 1 ̸≲ ν. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {1, 2}), (eβ , {1, 2})}
and VΠ = {(eα, {ν}), (eβ , {ν})}. So εΠ is an ITPS−nbd of 1, VΠ is a DTPS−nbd of ν and
εΠ ⊓ VΠ = ϕ̂.

2. Or ν ̸≲ 1. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {ν}), (eβ , {ν})} and
VΠ = {(eα, {1}), (eβ , {1})}. So εΠ is an ITPS−nbd of ν, VΠ is a DTPS−nbd of 1 and
εΠ ⊓ VΠ = ϕ̂.

3. Or 2 ̸≲ ν. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {2}), (eβ , {2})} and
VΠ = {(eα, {ν}), (eβ , {ν})}. So εΠ is an ITPS−nbd of 2, VΠ is a DTPS−nbd of ν and
εΠ ⊓ VΠ = ϕ̂.

4. Or 2 ̸≲ 1. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {2}), (eβ , {2})} and
VΠ = {(eα, {1}), (eβ , {1})}. So εΠ is an ITPS−nbd of 2, VΠ is aDTPS−nbd of 1 and εΠ⊓VΠ = ϕ̂.

5. Or ν ̸≲ 2. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {ν}), (eβ , {ν})} and
VΠ = {(eα, {1, 2}), (eβ , {1, 2})}. So εΠ is an ITPS−nbd of ν, VΠ is a DTPS−nbd of 2 and
εΠ ⊓ VΠ = ϕ̂.

6. Or ν ̸≲ ζ. Then we define two soft sets εΠ and VΠ as follows εΠ = {(eα, {ν}), (eβ , {ν})} and
VΠ = {(eα, {ζ}), (eβ , {ζ})}. So εΠ is an ITPS−nbd of ν, VΠ is a DTPS−nbd of ζ and
εΠ ⊓ VΠ = ϕ̂.

To illustrate that (ℵ, η1, η2,Π,≲) is not lowerP ∗T−soft regularly ordered, we define aDPC−soft set λΠ as
follows: λΠ = {(eα, {1, 2, 4, 5, ...}), (eβ , {1, 2, 4, 5, ...})}. Since 3 ̸⋐ λΠ and there do not exit disjoint pair-
wise soft neighborhoods εΠ and VΠ of λΠ and 3, respectively, then (ℵ, η1, η2,Π,≲) is not lower P ∗T−soft
regularly ordered, which implies that (ℵ, η1, η2,Π,≲) is not TP ∗−soft T3−ordered.

Definition 5.5. An SBTOS (Υ, η1, η2,Π,≲) is said to be:

1. Soft pairwise normally ordered if for each disjointPC−soft setsFΠ and λΠ such thatFΠ is increasing
and λΠ is decreasing, there exist disjoint pairwise soft neighborhoods εΠ of FΠ and VΠ of λΠ such
that εΠ is increasing and VΠ is decreasing.
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2. TP−soft T4−ordered if it is soft pairwise normally ordered and PST •
1− ordered.

Theorem 5.5. An SBTOS (Υ, η1, η2,Π,≲) is soft pairwise normally ordered if and only if for every
decreasing ( increasing ) pairwise closed soft set FΠ and every decreasing ( increasing ) pairwise soft neigh-
borhood UΠ of FΠ, there is a decreasing ( increasing ) pairwise soft neighborhood VΠ of FΠ, satisfies that
cls12(VΠ) ⊑ UΠ.

Proof.
Necessity: Let FΠ be a DPC−soft set and UΠ be a pairwise soft neighborhood and decreasing
of FΠ. Then, U cΠ is an IPC−soft set and FΠ ⊓ U cΠ = ϕ̂. Since (Υ, η1, η2,Π,≲) is soft pairwise
normally ordered, then there exist disjoint pairwise soft neighborhood VΠ of FΠ and pairwise
soft neighborhood εΠ of U cΠ. Since εΠ is a pairwise soft neighborhood of U cΠ, then there exists a
PC−soft set λΠ such that U cΠ ⊑ λΠ ⊑ εΠ. Consequently, εcΠ ⊑ λcΠ ⊑ UΠ and VΠ ⊑ εcΠ. So it follow
that cls12(VΠ) ⊑ cls12(ε

c
Π) ⊑ λcΠ ⊑ UΠ. Thus FΠ ⊑ cls12(VΠ) ⊑ cls12(ε

c
Π) ⊑ λcΠ ⊑ UΠ. Hence the

necessity part holds.

Sufficiency: Let F 1
Π and F 2

Π be two disjoint PC−soft sets such that F 1
Π is decreasing and F 2

Π is
increasing. Then F 2c

Π is a DPO−soft set containing F 1
Π. By hypothesis, there exists a decreasing

pairwise soft neighborhood VΠ of F 1
Π such that cls12(VΠ) ⊑ F 2c

Π . Setting λΠ = ΥΠ − cls12(VΠ). This
means that λΠ is a PO−soft set containing F 2

Π. Obviously, F 2
Π ⊑ λΠ, F

1
Π ⊑ VΠ and λΠ ⊓ VΠ = ϕ̂.

Now, i(λΠ) is a pairwise soft neighborhood and increasing of F 2
Π. Suppose that i(λΠ) ⊓ VΠ ̸= ϕ̂.

Then there exists α ∈ Π and ν ∈ Υ such that ν ∈ i(λΠ) and ν ∈ V (α) = d(V (α)). This implies
that there exist ρ ∈ λ(α) and δ ∈ V (α) such that ρ ≲ ν and ν ≲ δ. As ≲ is transitive, then ρ ≲ δ.

Therefore δ ⋐ λΠ⊓VΠ. This contradicts the disjointness between λΠ and VΠ. Thus i(λΠ)⊓VΠ = ϕ̂.
Hence the proof is completed.

A proof similar can be given for the statement inside the parentheses.
Proposition 5.17. Every TP−soft T4−ordered space (Υ, η1, η2,Π,≲) is also TP ∗−soft T3−ordered.

Proof. Let ρ ∈ Υ and FΠ be a DPC−soft set such that ρ ⋐ FΠ. Since (Υ, η1, η2,Π,≲) is
PST •−ordered, then (i(ρ))Π is an IPC−soft set and since (Υ, η1, η2,Π,≲) is soft pairwise nor-
mally ordered, then there exist disjoint pairwise soft neighborhood εΠ and VΠ of (i(ρ))Π and FΠ

respectively, such that εΠ is increasing and VΠ is decreasing. Therefore, (Υ, η1, η2,Π,≲) is lower
P ∗T−soft regularly ordered. IfFΠ is an IPC−soft set, thenweprove similarly that (Υ, η1, η2,Π,≲)
is upperP ∗T−soft regularly ordered. Thus (Υ, η1, η2,Π,≲) is TP ∗− soft regularly ordered. Hence
(Υ, η1, η2,Π,≲) is TP ∗− soft T3−ordered.

The converse of the above proposition is not always true as illustrated in the following example.
Example 5.10. From Example (4.28) in [5], if we take η1 = {ωΠ ⊑ ℵΠ such that 1 ⋐ ωΠ} and
η2 = {FΠ ⊑ ℵΠ such that 1 ∈ F (α2) and F cΠ is finite }. Then we have (ℵ, η1, η2,Π,≲) is TP ∗−soft
T3−ordered, but it is not TP− soft T4−ordered.

Theorem 5.6. The property of being a PSTi (PST •
i , PST

∗
i , PST

∗∗
i )−ordered space is soft bitopological

ordered property, for i = 0, 1, 2.

Proof. We prove the theorem in case of PST2 and the other follow similar lines.

Suppose that ϕψ is an ordered embedding soft homeomorphism map of a PST2−ordered space
(Υ, η1, η2,Π,≲1) on to an SBTOS (Γ, η∗1 , η

∗
2 ,K,≲2) and let ν, ζ ∈ Γ such that ν ̸≲2 ζ. Then,
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να ̸≲2 ζ
α, ∀α ∈ K. Since ϕψ is bijective, then there exist ρβ and δβ in ΥΠ such that ϕψ(ρβ) = να

and ϕψ(δβ) = ζα and since ϕψ is ordered embedding, then ρβ ̸≲1 δ
β . So ρ ̸≲1 b. By hypothesis,

there exist disjoint pairwise soft neighborhoods εΠ and VΠ of ρ and δ, respectively, such that εΠ
is increasing and VΠ is decreasing. Since ϕψ is bijective soft open, then ϕψ(εΠ) and ϕψ(VΠ) are
disjoint soft neighborhoods of ν and ζ, respectively. It follows by Theorem 2.3, that ϕψ(εΠ) is
increasing and ϕψ(VΠ) is decreasing. This completes the proof.
Theorem 5.7. The property of being a TP ∗(PP ∗)−soft T3−ordered space is soft bitopological ordered
property.

Proof. The proof is similar to the previous theorem
Theorem 5.8. The property of being a TP−soft T4−ordered space is soft bitopological ordered property.

Proof. Suppose that ϕψ is an ordered embedding soft homeomorphism map of a soft pairwise
normally ordered space (Υ, η1, η2,Π,≲1) on to an SBTOS (Γ, η∗1 , η

∗
2 ,K,≲2) and let λΠ and FΠ be

two disjoint pairwise closed soft sets such that λΠ is increasing and FΠ is decreasing. Since ϕψ
is bijective soft continuous, then ϕ−1

ψ (λΠ) and ϕ−1
ψ (FΠ) are disjoint PC−soft sets and since ϕψ is

ordered embedding, then ϕ−1
ψ (λΠ) is increasing and ϕ−1

ψ (FΠ) is decreasing. By hypothesis, there
exist disjoint pairwise soft neighborhoods εΠ and VΠ of ϕ−1

ψ (λΠ) and ϕ−1
ψ (FΠ), respectively, such

that εΠ is increasing and VΠ is decreasing. So λΠ ⊑ ϕψ(εΠ) and FΠ ⊑ ϕψ(VΠ). The disjointness of
the soft neighborhoods ϕψ(εΠ) and ϕψ(VΠ) completes the proof.

6 Discussion

This paper presents the notion of decreasing and increasing pairwise soft sets and investigates
various associated properties. Notably, it is shown that the relative complement of an increasing
or decreasing pairwise soft set preserves the respective property. The main contribution of this
work is the construction of a Soft Bitopological Ordered Space (SBTOS); (Υ, η1, η2,Π,≲), which
refines the given Soft Bitopological Space (SBTS); (Υ, η1, η2,Π) by introducing a partial order re-
lation on the universe set Υ. New ordered soft separation axioms, namely PSTi-ordered spaces,
PST •

i -ordered spaces, PST ∗
i -ordered spaces, and PST ∗∗

i -ordered spaces, where i = 0, 1, 2, are
introduced and shown to be strictly stronger than P -soft Ti-ordered spaces as established by El-
Shafei et al. in 2019. In Theorem 3.2, it is demonstrated that the collection of increasing or de-
creasing open soft sets forms an increasing or decreasing soft topology, respectively. Addition-
ally, Proposition 5.15 investigates the conditions under which these PSTi-ordered spaces, with
i = 0, 1, 2, are equivalent.

Furthermore, the concept of a bi−ordered subspace is introduced and its hereditary property
within the framework of soft bitopological ordered spaces is examined. Soft bitopological ordered
properties are defined and their validity is confirmed for PSTi-ordered spaces, PST •

i -ordered
spaces, PST ∗

i -ordered spaces, and PST ∗∗
i -ordered spaces, where i = 0, 1, 2. Moreover, the prop-

erty of being a TP -soft T3-ordered space is established as a soft bitopological ordered property.
The findings of this study have implications for the interpretation of an SBTOS; (Υ, η1, η2,Π,≲).
It can be regarded as a Soft Topological Space (STS) when ≲ is an equality relation and η1 = η2.
Similarly, it can be considered a topological ordered space if Π is a singleton set and η1 = η2. Fur-
thermore, an SBTOS exhibits characteristics of a soft bitopological space when Π is a singleton
set and ≲ is an equality relation.

35



S. H. Shalil et al. Malaysian J. Math. Sci. 18(1): 9–38(2024) 9 - 38

Overall, the concepts introduced and the results obtained in this paper lay the groundwork for
further significant research in the field of soft bitopological ordered spaces. Future research direc-
tionswill include the exploration of pairwise continuity in such spaces. By discussing the obtained
results and their interpretations, as well as their implications in the broader context of previous
studies and working hypotheses, this paper contributes to the advancement of knowledge in this
area.

7 Conclusion

In 1965, Nachbin [24] introduced the concept of topological ordered space, which combines
the properties of partial order relations and topological spaces. Later, in 1999, Molodtsov [23]
proposed the idea of "soft sets" to address issues related to uncertainty, vagueness, imprecision,
and incomplete data. Building upon these concepts, Ittanagi [16] introduced the notion of a soft
bitopological space.

In this paper, we introduced the concept of soft bitopological ordered spaces and established
some properties of them. We also introduced and studied the notions of increasing (decreas-
ing, balancing) pairwise open (closed) soft sets, increasing (decreasing, balancing) total (partial)
pairwise soft neighborhoods, and increasing (decreasing, balancing) pairwise open soft neigh-
borhoods. Additionally, we discussed the origins of increasing (decreasing) pairwise soft closure
(interior). This research is an important step towards understanding the properties of soft bitopo-
logical ordered spaces and their potential applications in decision making. Future work will focus
on exploring these applications in more depth. Through this research, a new class of bi−ordered
soft separation axioms, called PSTi, PST •

i , PST ∗
i , and PST ∗∗

i has been introduced and studied
for (i = 0, 1, 2). The concepts of belong, non-belong, partial belong, and total non-belong have
been considered to understand their relationships. To aid in understanding, examples have been
provided. In future research, we aim to explore new bi−ordered soft separation axioms by utiliz-
ing these concepts on supra soft topological spaces. We hope that this work will inspire further
research and advancements in the field of soft topology.
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